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ABSTRACT 

The growing processor performance is hampered by the ever growing penalties caused by cache misses. Furthermore 

the gap between CPU and memory continues to widen causing novel processors to not perform at their full potential. 

There have been various solutions proposed to the caching problem which include prefetching, victim and miss caches 

as well as stream buffers. The right combination of these technologies still remains uncertain. This paper will examine 

different caching techniques as well as different variations of different sizes in cache and analyze performance effects 

on a mixture of benchmarks. We will also examine how code structure affects performance and cache hit/miss ratios. 

We also examine Athlon-specific prefetch instructions.  

 

 

1 INTRODUCTION 

 

The gap between CPU and memory performance 

continues to grow and this continuing trend poses a 

serious problem for future processor development and 

performance. Due to cache misses the processor has to 

stall thus losing valuable CPU time and degrading 

performance. This is true especially for scientific 

programs where cache access is vast which thereby 

causes high miss rates for all cache hierarchies. Several 

solutions have been proposed to this problem. One of 

the more robust ones includes software prefetches 

where we speculate on future memory accesses and 

prefetch needed data to cache. Prefetching must be 

accurate and timely. If we prefetch too soon, then our 

prefetch will be of no use (prefetched data will get 

replaced before we have an opportunity to use it) and it 

must be accurate in a sense that we must prefetch data 

that we will indeed use. Another way to decrease the 

amount of cache misses in a program is to acknowledge 

memory layout of several programming languages. The 

common case, C, follows a row major memory layout 

where we access rows first. Fig 1 demonstrates how easy 

it is to significantly reduce miss rates by simple loop 

interchange. Note that in the first loop is much faster 

than the second because in the second, the array does 

not fit in memory [since we are performing a column-

major access] This simple operation reduces L1d miss 

from 19.9% to 1.2%.  

 

 

 

 
// fast.c                                      // slow.c 

int main(void)                            int main(void) 

{                                                  { 

  int h, i, j, a[1024][1024];          int h, i, j, a[1024][1024]; 

for (h = 0; h < 10; h++)                  for (h = 0; h < 10; h++) 

       for (i = 0; i < 1024; i++)           for (i = 0; i < 1024; i++) 

           for (j = 0; j < 1024; j++)          for (j = 0; j < 1024; j++) 

                a[i][j] = 0;      // !!              a[j][i] = 0;      // !! 

                   return 0;                            return 0; 

     }                                                 } 

Fig1. C follows row-major order, thus arranging loops in that fashion 

will cause a decrease in both L1 and L2 misses on the order of 17-fold  

Credit: CacheGrind documentation  

 

In order to profile such subtle affects on loop 

interchange we need sophisticated tools. In this paper 

we use Cache Grind which is part of Valgrind available 

freely on the net. Cache Grind is a cache simulator which 

simulates the cache hierarchy during execution of a 

program. It also has the ability to dump statistics into a 

separate file. It is important to note that Cache Grind 

simulates inclusive L2 cache which replicates what is in 

L1. This can cause a greater amount of misses reported 

by Cache Grind. The downside of Cache Grind is that it 

only considers a program as a sole process running on 

the machine, in other words it ignores any number of 

background processes that are currently running on the 

system. It also ignores misses from the TLB and it has no 

prefetching, nevertheless with the above mentioned 

shortcomings Cache Grind still captures over 98% of 

cache behaviour based on hardware measurements [1].  

 



In this paper we also make distinctions between L1i L1d 

and L2 misses.  

 
Fig 2: Benefits  from increase in size of L1.  

(Bioinformatics benchmark)   

 

As indicated in Fig 2 improving L1d misses provides the 

most performance benefit. L1i posses a sequential flow 

thus miss rates from them is minimal.  

 

In Fig 3 we present results capturing the miss rate 

derived after increasing the L2 Cache.   

 
Fig3: Virtually no benefit if we increase the size of L2 

(Bioinformatics benchmark)  

 

Again, in the figure above we see that modifying L1 gives 

us the most benefit, and thus we will focus our attention 

on it in this paper.  

 

Before we continue, it is also important to characterize 

four types of cache misses that hurt performance. 

Conflict, compulsory, capacity  and coherence. Conflict 

misses are misses that would not have occurred if the 

cache was fully associative and had LRU replacement. 

Compulsory misses are misses required in any cache 

organization because they are the first reference to an 

instruction or piece of data. Capacity misses occur when 

the cache size is not sufficient to hold data between 

references, and coherence misses are misses that occur 

as a result of invalidation to preserve multiprocessor 

cache consistency [2]. 

 

Clearly for the reasons mentioned above studying cache 

hierarchy is extremely important to derive the most 

performance out of today’s machines. This paper is 

organized as follows, section 2 presents background and 

related work, section 3 presents our methodology, 

section 4 presents our cache architecture, section 5 

presents our results and section 6 concludes.    

 

2 BACKGROUND AND RELATED WORK 

 

The research carried out in order to study the 

performance improvements possible by cache hierarchy 

is truly vast. In this paper we will implement and analyze 

miss cache, victim cache and prefetch techniques, thus 

we will focus on discussing work that has been done in 

these areas.  

 

In [3] the authors describe a Markov Prediction scheme 

which essentially acts as an interface between the on-

chip and off-chip cache. The key idea behind the design 

is that it prefetches the necessary data and prioritizes it 

to better take advantage of the processor. It mentions 

important ideas such as prefetch coverage, accuracy and 

timeliness. A good prefetcher must have large coverage 

(number of addresses supplied by the prefetcher), it 

must be accurate (prefetched data usefulness) and it 

must be timely (make sure that prefetched data will not 

get displaced before CPU uses it). The key assumption 

that they make, which might skew their data a little bit is 

that the processor has on-chip prefetch buffer which is 

essentially examined simultaneously with on-chip cache 

(i.e. the prefetched data does not actually displace data 

which is located in cache).  

 

In [4] the authors describe the implementation of 

additional fully-associative cache and prefetch buffers. 

Important vocabulary is introduced which we will use in 

our paper: miss cache – small associative cache which 

stores all of the missed addressed. Victim cache – is 

cache which is sued to hold blocks which were evicted, 

due to capacity or compulsory misses, from the CPU. 

Stream buffers start prefetching data starting from the 
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miss address [in a stream buffer the data is stored in a 

buffer, not in cache, thus this avoids cache pollution – 

the stream buffer technique will greatly reduce 

compulsory and capacity misses]. A straight-forward 

extension of the stream buffers are the multi-way 

stream buffers which are useful for prefetching along 

multiple intertwined data reference streams [4].  

 

In [4] the authors are careful to point out also that most 

programs/benchmarks lose over half of their 

performance in L1 cache misses and a relatively small 

percentage of performance is lost in the second level of 

cache. This again confirms our original assumption at the 

beginning of the paper mainly that, L1 is overly 

important when it comes to improving the overall 

performance.  

 

[4] Also states that direct mapped cache has a 

disadvantage of being prone to more conflict misses, it is 

faster to access. This is indeed a logical statement. 

However as Fig 4 shows performance impact when we 

increase the associativity of L1 cache (both i & d) is not 

improved by a tremendous amount when ran on our 

bioinformatics benchmark.  

 
Fig4. Increasing associativity produces virtually no 

performance increase in our bioinformatics program.  

 

When implementing cache techniques, it is important 

not to overlook the space constraint. All exogenous 

factors being equal, victim cache makes better use of the 

space, because instead of adding essentially the same 

block that was added to our cache (on a miss) it only 

adds blocks that were evicted from cache due to a 

conflict miss. In our case we are given a small 8K L1 

cache, and by experimentation small, directly mapped 

caches benefit the most from victim cache.  

 

We want to know, what the limitation of our cache 

improvement is. In other words, what is the limiting 

factor that we are constrained by? To answer this 

question we can observe that as size grows, a larger 

percentage of cache misses are due to conflict and 

compulsory misses. Conflict misses are usually easily 

resolved by increasing the size of the cache and 

compulsory misses can be countered by prefetching. The 

most common technique is the tagging where we set 

each block’s tag bit to zero when it is prefetched and to 

1 when it is being accessed. During the transition we 

begin prefetching the next block. Stream buffers 

improve on this idea by beginning prefetching successive 

lines starting at the miss target.  

 

In this paper we implement Athlon prefetching. In other 

words, we modify our code and issue specific assembly 

prefetch instructions which are supported by Athlon 

processors to prefetch a specified address.  

 

3 METHODOLOGY 

 

In this paper, as stated before, we implement miss 

cache, victim cache, modify the code of our benchmark 

and experiment with Athlon prefetching.  

 

We use two benchmarks: Pac-man and Bioinformatics 

 

To implement victim and miss cache we had to modify 

Cache Grind to carry our appropriate actions on a cache 

miss. Fig 5 shows a snippet of the code used to 

implement miss cache in Cache Grind, mainly if data was 

not found in cache, we add the missed tag to the buffer 

[i.e. our simulated victim cache].   

 
/* For the miss cache we do not need to worry about                          

 * copying data over to our L1, since in a miss we duplicate                 

 * entries                                                                   

 */                                                                            

     if (enableMiss)                                                         

        for (i = 0; i < SIZEMC; i++)                                         

           if (tag == mc[i])                                                 

              return;                                                        

                                                                             

      /* A miss;  install this tag as MRU, shuffle rest down. */             

      for (j = L.assoc - 1; j > 0; j--) {                                    

         set[j] = set[j - 1];                                                

      }                                                                      

                                                                             

      set[0] = tag;                                                          

                                                                             

      /* For miss cache we insert the missed data [simulated by tag]         

       * for VC we insert the thrown out data                                

       */                                                                    

       if (enableMiss)                                                       

          mc[countermc]=tag;                                                 

       if ((countermc++) == SIZEMC)                                          

          countermc = 0;             

Fig 5: Sample Cache Grind implementation of miss cache     
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Victim cache was implemented in a similar way, but only 

instead of adding blocks that were missed, we add 

blocks that were evicted.  

 

We also modified the code of our Pac-Man benchmark in 

order for it to be more cache friendly. We know that a C 

programming language uses row-order memory layout. 

We noted that when or benchmark program was loading 

the levels it was using a column order layout, mainly:  

 
for(b = 0; b < 28; b++) { 

     for(a = 0; a < 29; a++) { 

          fscanf(fin, "%d", &Level[a][b]); 

 if(Level[a][b] == 2) { Food++; } …. 

Fig 6: Column-major order.  

 

As Fig 6 shows this code in Pacman caused a huge 

amount of L1d misses. By switching the two for-loops we 

are able to decrease amount of cache misses 

substantially.  

 

Lastly we implement a prefetch mechanism relaying on 

Athlon specific prefetch instructions (prefetch(%) and 

prefetchw(%) [for write]) There are commercial 

compilers such as VectorC available that will be able to 

dynamically insert prefetch instructions into assembly, 

however we decided to simply use GCC assembly hints 

to add support for Athlon prefetches. Fig 6 illustrates a 

sample implementation of inlined GCC functions that 

upon compilation will result in assembly generated 

prefetch instructions at specified lengths.  

 
#if  defined(AMD_PREFETCH) 

static __inline__ void CPU_prefetchwR(const void *s) { 

         __asm__ ("prefetchw 64 (%0)" :: "r" ((s)) ); 

} 

static __inline__ void CPU_prefetchR(const void *s) { 

         __asm__ ("prefetch 64(%0)" :: "r" ((s)) ); 

} 

#endif 

Fig 7 By inserting this into our code, we can call prefetch(%) to prefetch 

64 bytes ahead (in the above example) [Credit: David Mathog] 

 
4 CACHE ARCHITECTURE 

 

The basic background of what this paper implements has 

already been discussed in previous sections, so it will not 

be discussed again here. If details are necessary please 

refer to previous sections.  

 

For our design we have implemented a 64B victim and 

miss cache, which according to cacti will take 

approximately 0.01456 mm^2. 

 

The design of victim cache still needs to be improved 

because at this point it is not clear how Cache Grind 

deals with cache entries that are thrown out and thus 

more research is needed in that area.  

 

5 RESULTS 

 

For performance analysis we used a perceptron based 

branch predictor and cycle latencies were estimated 

with Cacti. The resulting numbers were then entered 

into a simple performance simulator to generate an 

estimate for approximate performance given parameters 

such as cache misses, branch predictor misses and L2 

latencies.  

 

First we show the result when using victim and miss 

cache. We ran our test bioinformatics program and 

below show the performance increase by using both 

concurrently.  

 

 
Fig 8. Clearly Victim and Miss cache together greatly 

improve performance of our basic benchmark 

(Bioinformatics program)  

 

Next we show performance increase by modifying our 

second benchmark program (Pac-man) as described in 

section 3. 

 

 
Fig 9: By simple loop rearrangement we are able to 

improve performance by 2x! 
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Athlon prefetching: our results regarding Athlon 

prefetching were inconclusive and need more testing. 

The reason for this is because prefetching by exactly the 

right amount is very tough in assembly and more time is 

needed to provide very accurate model for Athlon 

prefetching boost.  

 

The basic idea is simple, we put calls to our prefetch 

function described in section 3 such as 

(CPU_prefetchR(&alph[i]);) where &alph is the next 

address we want to prefetch. We put this call in a loop 

(as it is the place where most misses occur), however it 

is not clear to us how to precisely determine the exact 

timeliness of the needed prefetch length, however this 

problem is very interesting to us and we will continue 

working on it.  

 

6 CONCLUSION 

 

This paper discussed the great potential that can be 

achieved by making small modifications to existing cache 

hierarchy. Performance increase is highly significant, 

thus this reason greatly motivates further study in this 

area. We have implemented victim, miss caches as well 

as modified a simple loop in our benchmark program. 

The performance gains we saw were significant, ranging 

from 2 to 4x performance increase which resulted from 

simple modifications. Athlon prefetching is a promising 

technology and we experimented a little bit with it in 

this project, however due to time constraints we were 

unable to fully utilize it, nevertheless the literature 

suggests [AMD papers] improvements of 50-100%  are 

easily achievable with prefetch instructions.  
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