
ANALYSIS OF CACHE ARCHITECTURES

Nikolay Pavlovich Laptev

Department of Computer Science – University of California Santa Barbara

Santa Barbara, CA, 93030

nlaptev@cs.ucsb.edu

ABSTRACT

The growing processor performance is hampered by the ever growing penalties caused by cache misses. Furthermore

the gap between CPU and memory continues to widen causing novel processors to not perform at their full potential.

There have been various solutions proposed to the caching problem which include prefetching, victim and miss caches

as well as stream buffers. The right combination of these technologies still remains uncertain. This paper will examine

different caching techniques as well as different variations of different sizes in cache and analyze performance effects

on a mixture of benchmarks. We will also examine how code structure affects performance and cache hit/miss ratios.

We also examine Athlon-specific prefetch instructions.

1 INTRODUCTION

The gap between CPU and memory performance

continues to grow and this continuing trend poses a

serious problem for future processor development and

performance. Due to cache misses the processor has to

stall thus losing valuable CPU time and degrading

performance. This is true especially for scientific

programs where cache access is vast which thereby

causes high miss rates for all cache hierarchies. Several

solutions have been proposed to this problem. One of

the more robust ones includes software prefetches

where we speculate on future memory accesses and

prefetch needed data to cache. Prefetching must be

accurate and timely. If we prefetch too soon, then our

prefetch will be of no use (prefetched data will get

replaced before we have an opportunity to use it) and it

must be accurate in a sense that we must prefetch data

that we will indeed use. Another way to decrease the

amount of cache misses in a program is to acknowledge

memory layout of several programming languages. The

common case, C, follows a row major memory layout

where we access rows first. Fig 1 demonstrates how easy

it is to significantly reduce miss rates by simple loop

interchange. Note that in the first loop is much faster

than the second because in the second, the array does

not fit in memory [since we are performing a column-

major access] This simple operation reduces L1d miss

from 19.9% to 1.2%.

// fast.c // slow.c

int main(void) int main(void)

{ {

 int h, i, j, a[1024][1024]; int h, i, j, a[1024][1024];

for (h = 0; h < 10; h++) for (h = 0; h < 10; h++)

 for (i = 0; i < 1024; i++) for (i = 0; i < 1024; i++)

 for (j = 0; j < 1024; j++) for (j = 0; j < 1024; j++)

 a[i][j] = 0; // !! a[j][i] = 0; // !!

 return 0; return 0;

 } }

Fig1. C follows row-major order, thus arranging loops in that fashion

will cause a decrease in both L1 and L2 misses on the order of 17-fold

Credit: CacheGrind documentation

In order to profile such subtle affects on loop

interchange we need sophisticated tools. In this paper

we use Cache Grind which is part of Valgrind available

freely on the net. Cache Grind is a cache simulator which

simulates the cache hierarchy during execution of a

program. It also has the ability to dump statistics into a

separate file. It is important to note that Cache Grind

simulates inclusive L2 cache which replicates what is in

L1. This can cause a greater amount of misses reported

by Cache Grind. The downside of Cache Grind is that it

only considers a program as a sole process running on

the machine, in other words it ignores any number of

background processes that are currently running on the

system. It also ignores misses from the TLB and it has no

prefetching, nevertheless with the above mentioned

shortcomings Cache Grind still captures over 98% of

cache behaviour based on hardware measurements [1].

In this paper we also make distinctions between L1i L1d

and L2 misses.

Fig 2: Benefits from increase in size of L1.

(Bioinformatics benchmark)

As indicated in Fig 2 improving L1d misses provides the

most performance benefit. L1i posses a sequential flow

thus miss rates from them is minimal.

In Fig 3 we present results capturing the miss rate

derived after increasing the L2 Cache.

Fig3: Virtually no benefit if we increase the size of L2

(Bioinformatics benchmark)

Again, in the figure above we see that modifying L1 gives

us the most benefit, and thus we will focus our attention

on it in this paper.

Before we continue, it is also important to characterize

four types of cache misses that hurt performance.

Conflict, compulsory, capacity and coherence. Conflict

misses are misses that would not have occurred if the

cache was fully associative and had LRU replacement.

Compulsory misses are misses required in any cache

organization because they are the first reference to an

instruction or piece of data. Capacity misses occur when

the cache size is not sufficient to hold data between

references, and coherence misses are misses that occur

as a result of invalidation to preserve multiprocessor

cache consistency [2].

Clearly for the reasons mentioned above studying cache

hierarchy is extremely important to derive the most

performance out of today’s machines. This paper is

organized as follows, section 2 presents background and

related work, section 3 presents our methodology,

section 4 presents our cache architecture, section 5

presents our results and section 6 concludes.

2 BACKGROUND AND RELATED WORK

The research carried out in order to study the

performance improvements possible by cache hierarchy

is truly vast. In this paper we will implement and analyze

miss cache, victim cache and prefetch techniques, thus

we will focus on discussing work that has been done in

these areas.

In [3] the authors describe a Markov Prediction scheme

which essentially acts as an interface between the on-

chip and off-chip cache. The key idea behind the design

is that it prefetches the necessary data and prioritizes it

to better take advantage of the processor. It mentions

important ideas such as prefetch coverage, accuracy and

timeliness. A good prefetcher must have large coverage

(number of addresses supplied by the prefetcher), it

must be accurate (prefetched data usefulness) and it

must be timely (make sure that prefetched data will not

get displaced before CPU uses it). The key assumption

that they make, which might skew their data a little bit is

that the processor has on-chip prefetch buffer which is

essentially examined simultaneously with on-chip cache

(i.e. the prefetched data does not actually displace data

which is located in cache).

In [4] the authors describe the implementation of

additional fully-associative cache and prefetch buffers.

Important vocabulary is introduced which we will use in

our paper: miss cache – small associative cache which

stores all of the missed addressed. Victim cache – is

cache which is sued to hold blocks which were evicted,

due to capacity or compulsory misses, from the CPU.

Stream buffers start prefetching data starting from the

8192 16384 32768 65536

M
is

s
R

a
te

Size of L1 (B)

Increasing L1 size

L1i L1d L2i L2d

8192 16384 32768

M
is

s
R

a
te

Size of L2 (B)

Increasing L2 size

L1i L2i L2d L1d

miss address [in a stream buffer the data is stored in a

buffer, not in cache, thus this avoids cache pollution –

the stream buffer technique will greatly reduce

compulsory and capacity misses]. A straight-forward

extension of the stream buffers are the multi-way

stream buffers which are useful for prefetching along

multiple intertwined data reference streams [4].

In [4] the authors are careful to point out also that most

programs/benchmarks lose over half of their

performance in L1 cache misses and a relatively small

percentage of performance is lost in the second level of

cache. This again confirms our original assumption at the

beginning of the paper mainly that, L1 is overly

important when it comes to improving the overall

performance.

[4] Also states that direct mapped cache has a

disadvantage of being prone to more conflict misses, it is

faster to access. This is indeed a logical statement.

However as Fig 4 shows performance impact when we

increase the associativity of L1 cache (both i & d) is not

improved by a tremendous amount when ran on our

bioinformatics benchmark.

Fig4. Increasing associativity produces virtually no

performance increase in our bioinformatics program.

When implementing cache techniques, it is important

not to overlook the space constraint. All exogenous

factors being equal, victim cache makes better use of the

space, because instead of adding essentially the same

block that was added to our cache (on a miss) it only

adds blocks that were evicted from cache due to a

conflict miss. In our case we are given a small 8K L1

cache, and by experimentation small, directly mapped

caches benefit the most from victim cache.

We want to know, what the limitation of our cache

improvement is. In other words, what is the limiting

factor that we are constrained by? To answer this

question we can observe that as size grows, a larger

percentage of cache misses are due to conflict and

compulsory misses. Conflict misses are usually easily

resolved by increasing the size of the cache and

compulsory misses can be countered by prefetching. The

most common technique is the tagging where we set

each block’s tag bit to zero when it is prefetched and to

1 when it is being accessed. During the transition we

begin prefetching the next block. Stream buffers

improve on this idea by beginning prefetching successive

lines starting at the miss target.

In this paper we implement Athlon prefetching. In other

words, we modify our code and issue specific assembly

prefetch instructions which are supported by Athlon

processors to prefetch a specified address.

3 METHODOLOGY

In this paper, as stated before, we implement miss

cache, victim cache, modify the code of our benchmark

and experiment with Athlon prefetching.

We use two benchmarks: Pac-man and Bioinformatics

To implement victim and miss cache we had to modify

Cache Grind to carry our appropriate actions on a cache

miss. Fig 5 shows a snippet of the code used to

implement miss cache in Cache Grind, mainly if data was

not found in cache, we add the missed tag to the buffer

[i.e. our simulated victim cache].

/* For the miss cache we do not need to worry about

 * copying data over to our L1, since in a miss we duplicate

 * entries

 */

 if (enableMiss)

 for (i = 0; i < SIZEMC; i++)

 if (tag == mc[i])

 return;

 /* A miss; install this tag as MRU, shuffle rest down. */

 for (j = L.assoc - 1; j > 0; j--) {

 set[j] = set[j - 1];

 }

 set[0] = tag;

 /* For miss cache we insert the missed data [simulated by tag]

 * for VC we insert the thrown out data

 */

 if (enableMiss)

 mc[countermc]=tag;

 if ((countermc++) == SIZEMC)

 countermc = 0;

Fig 5: Sample Cache Grind implementation of miss cache

2 4 8 16

M
is

s
ra

te

Associativity

Increasing L1 associativity

L1i L1d L2i L2d

Victim cache was implemented in a similar way, but only

instead of adding blocks that were missed, we add

blocks that were evicted.

We also modified the code of our Pac-Man benchmark in

order for it to be more cache friendly. We know that a C

programming language uses row-order memory layout.

We noted that when or benchmark program was loading

the levels it was using a column order layout, mainly:

for(b = 0; b < 28; b++) {

 for(a = 0; a < 29; a++) {

 fscanf(fin, "%d", &Level[a][b]);

 if(Level[a][b] == 2) { Food++; } ….

Fig 6: Column-major order.

As Fig 6 shows this code in Pacman caused a huge

amount of L1d misses. By switching the two for-loops we

are able to decrease amount of cache misses

substantially.

Lastly we implement a prefetch mechanism relaying on

Athlon specific prefetch instructions (prefetch(%) and

prefetchw(%) [for write]) There are commercial

compilers such as VectorC available that will be able to

dynamically insert prefetch instructions into assembly,

however we decided to simply use GCC assembly hints

to add support for Athlon prefetches. Fig 6 illustrates a

sample implementation of inlined GCC functions that

upon compilation will result in assembly generated

prefetch instructions at specified lengths.

#if defined(AMD_PREFETCH)

static __inline__ void CPU_prefetchwR(const void *s) {

 __asm__ ("prefetchw 64 (%0)" :: "r" ((s)));

}

static __inline__ void CPU_prefetchR(const void *s) {

 __asm__ ("prefetch 64(%0)" :: "r" ((s)));

}

#endif

Fig 7 By inserting this into our code, we can call prefetch(%) to prefetch

64 bytes ahead (in the above example) [Credit: David Mathog]

4 CACHE ARCHITECTURE

The basic background of what this paper implements has

already been discussed in previous sections, so it will not

be discussed again here. If details are necessary please

refer to previous sections.

For our design we have implemented a 64B victim and

miss cache, which according to cacti will take

approximately 0.01456 mm^2.

The design of victim cache still needs to be improved

because at this point it is not clear how Cache Grind

deals with cache entries that are thrown out and thus

more research is needed in that area.

5 RESULTS

For performance analysis we used a perceptron based

branch predictor and cycle latencies were estimated

with Cacti. The resulting numbers were then entered

into a simple performance simulator to generate an

estimate for approximate performance given parameters

such as cache misses, branch predictor misses and L2

latencies.

First we show the result when using victim and miss

cache. We ran our test bioinformatics program and

below show the performance increase by using both

concurrently.

Fig 8. Clearly Victim and Miss cache together greatly

improve performance of our basic benchmark

(Bioinformatics program)

Next we show performance increase by modifying our

second benchmark program (Pac-man) as described in

section 3.

Fig 9: By simple loop rearrangement we are able to

improve performance by 2x!

C
a

ch
e

 M
is

se
s

Impact of adding victim + miss cache

L1 DM with

V+M

L2 DM with

V+M

L1 W/O V+M

L2 W/O V+M

M
is

s
R

a
te

Modifying Code

L1 DM with

loop Opt

L2 DM with

loop opt

L1 W/O loop

opt

L2 W/O loop

opt

Athlon prefetching: our results regarding Athlon

prefetching were inconclusive and need more testing.

The reason for this is because prefetching by exactly the

right amount is very tough in assembly and more time is

needed to provide very accurate model for Athlon

prefetching boost.

The basic idea is simple, we put calls to our prefetch

function described in section 3 such as

(CPU_prefetchR(&alph[i]);) where &alph is the next

address we want to prefetch. We put this call in a loop

(as it is the place where most misses occur), however it

is not clear to us how to precisely determine the exact

timeliness of the needed prefetch length, however this

problem is very interesting to us and we will continue

working on it.

6 CONCLUSION

This paper discussed the great potential that can be

achieved by making small modifications to existing cache

hierarchy. Performance increase is highly significant,

thus this reason greatly motivates further study in this

area. We have implemented victim, miss caches as well

as modified a simple loop in our benchmark program.

The performance gains we saw were significant, ranging

from 2 to 4x performance increase which resulted from

simple modifications. Athlon prefetching is a promising

technology and we experimented a little bit with it in

this project, however due to time constraints we were

unable to fully utilize it, nevertheless the literature

suggests [AMD papers] improvements of 50-100% are

easily achievable with prefetch instructions.

REFERENCES

1. Dynamic Binary Analysis and Instrumentation",

by Nicholas Nethercote.

2. A Stateless, Content-Directed Data Prefetching

Mechanism

Robert Cooksey, Stephan Jourdan

Dirk Grunwald

Intel Corporation

Intel Corporation

University of Colorado

rncookse@ichips.intel.com

sjourdan@ichips.intel.com

grunwald@cs.colorado.edu

3. Prefetching using Markov Predictors

Dirk Grnnwald

Doug Joseph

Department of Computer Science

IBM T. J. Watson Research Lab

University of Colorado

P.O. Box 218

Boulder, Colorado, 80309-0430

IBM. T. J. Watson Research

grunwald@cs.colorado.edu

Yorktown Heights, NY 10598

djoseph@watson.ibm.com

4. Improving Direct-Mapped Cache Performance

by the Addition

of a Small Fully-Associative Cache and Prefetch

Buffers

Norman P. Jouppi

Digital Equipment Corporation Western

Research Lab

100 Hamilton Ave.. Palo Alto, CA 94301

5. Effective Jump-Pointer Prefetching for Linked

Data Structures

Amir Roth and Gurindar S. Sohi

Computer Sciences Department

University of Wisconsin, Madison

